A Comparative Study of Mixture Models for Automatic Topic Segmentation of Multiparty Dialogues

نویسندگان

  • Maria Georgescul
  • Alexander Clark
  • Susan Armstrong
چکیده

In this article we address the task of automatic text structuring into linear and nonoverlapping thematic episodes at a coarse level of granularity. In particular, we deal with topic segmentation on multi-party meeting recording transcripts, which pose specific challenges for topic segmentation models. We present a comparative study of two probabilistic mixture models. Based on lexical features, we use these models in parallel in order to generate a low dimensional input representation for topic segmentation. Our experiments demonstrate that in this manner important information is captured from the data through less features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique

The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...

متن کامل

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

Automatic social role recognition and its application in structuring multiparty interactions

Automatic processing of multiparty interactions is a research domain with important applications in content browsing, summarization and information retrieval. In recent years, several works have been devoted to find regular patterns which speakers exhibit in a multiparty interaction also known as social roles. Most of the research in literature has generally focused on recognition of scenario s...

متن کامل

Detecting speaker roles and topic changes in multiparty conversations using latent topic models

Accessing and browsing archives of multiparty conversations can be significantly facilitated by labeling them in terms of high level information. In this paper, we investigate automatic labeling of speaker roles and topic changes in professional meetings. Using the framework of unsupervised topic modeling we express speaker utterances as mixture of latent variables, each of which is governed by...

متن کامل

IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008